Cryptography

1 — Secret-key encryption: applying masks

G. Chénevert
September 16, 2019

ISEN

ALL IS DIGITAL! ynerea

mailto:gabriel.chenevert@yncrea.fr

Today

Secret-key encryption

Secret-key encryption

Recall: a symmetric cipher consists of a pair of encryption/decryption functions

E:KxM-—C and D:KxC—M

Secret-key encryption

Requirements

e Correct decryption : for all k € K and m € M,

D(k, E(k,m)) = m.

e Perfect secrecy : knowledge of the ciphertext should give an attacker no
information whatsoever about the plaintext, i.e.

PIM=m|C =c] =P[M = m]

with M € M and C € C considered as random variables.

Example

Bob: How many hot-dogs do you want?
Alice encrypts m € M = {1, 2, 3, 4, 5} by adding to it a large even integer k.
Eve overhears ciphertext 8765239874287635299876874 . ..

Her assessment of the possibilities for m changes: she gained some information.

Before: : ; . > After: ! : ; : :

Perfect secrecy

Replaced in practice by semantic security:
no polynomial time algorithm should give any attacker a non-negligible advantage

i.e. there exists no (efficient) ciphertext-only attack

I ice: ligibl < !
n pratice: negligible means < 5128"

Example with small key space

Suppose |[M| = |C| = 21024 || = 28,
Attack: given c € C,

e choose k € K randomly,

e output D(k, c).
Non-negligible probability of success!

= key space should be large (> 2!28) NB: message space too!

Today

One-time pad

The one-time pad

(Miller 1882, Vernam 1917)
Take M = C = K = G any finite abelian group:

Definition

E(k,m)=m+k
D(k,c) = c —k

Example

with G = (Z/267Z)"

cf. LABO

m = S("ENCRYPTASTRINGBYRANDOMLYSHIFTINGEVERYLETTER")

k = randkey(len(m))

print(“"plaintext: , m)

print("key: ", k)

print("ciphertext: ", m + k)

plaintext: ENCRYPTASTRINGBYRANDOMLYSHIFTINGEVERYLETTER
key: UFHAXHFMPEFENHTZCCDKRSVCAHKIZTVZEVZCSXUTPDV

ciphertext: ZTKSWXZNIYXNBOVYUDROGFHBTPTOTCJGJREURJZNIIN

In practice (from now on)

Use G = (Z/2Z)"
Group law: componentwise addition mod 2
aka bitwise XOR, or &

Example

010011 ¢ 111000 = 101011

Notice: for all x we have ©x = x, ie. x©&x =0

Binary one-time pad

With M =C = K = (Z/2Z)":

Definition

E(k,m)=mo k
D(k,c)=c @k

Encryption and decryption are the same function!

Example (12 bits)

Alice:
m= 111000111000 = E38

k = 011011010111 = 6D7
c=m® k =100011101111 = 8EF

Bob:
c =100011101111 = 8EF

k =011011010111 = 6D7
m=c® k=111000111000 = E38

Example (128 bits)

In [1]: from os import urandom
def xor(a,b):

return bytes([x“y for x,y in zip(a,b)])

=

= urandom(16)

In [2]: # Alice

m = b"OTP on 128 bits!"

c = xor(m,k)

print("m =", m.hex())
print("k =", k.hex())
print("c =", c.hex())

m = 4f545020616€20313238206269747321
k = 1cae3190198e7040cd486268c7bbc2c4
¢ = 53fa61b076e05071f f70420aaecfble5

In [3]: # Bob

mm = xor(c,k)

print("c =", c.hex())
print("k =", k.hex())
print("m =", mm.hex())

c = 53fa61b076e05071f f70420aaecfble5
k = 1cae3190198e7040cd486268c7bbc2c4
m = 4f545020616€20313238206269747321

OTP is provably secure! (1/2)

Theorem
The one-time pad decrypts correctly.

Proof.
D(k,E(k,m))=(m&@ k)@ k

=m® (k@ k)
=m&0

OTP is provably secure! (2/2)

Theorem (Shannon, 1949)
The one-time pad has perfect secrecy.

Proof.
Assuming K is uniformly distributed and independent from M,

]P’[I\/I:m,C:c]:IP[M:m,K:c@m]:%P[M:m],
]P’[C:c]:ZIP’[M:m,C:c]:%ZP[M:m]:%

hence PIM = m| C = c] = P[M = m].

http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf

Drawbacks

e The key is as long as the message!

But: still allows a transfer in secrecy (from m to k)

e The key should never be reused

For if ct = m @ k and ¢ = my @ k, then
ca®c=m ®m!

Which is a serious violation of perfect secrecy.

Today

Stream ciphers

One-time pad

With K = M = C = {0,1}":

E(k,x) = D(k,x) = x @ k.

Perfect secrecy, security level n, but:

e key as large as message
e fresh key needed for every message

e malleable: more on that later

Stream ciphers

Idea: make the OTP practical (addressing first drawback)

Definition (binary additive stream cipher)

E(k,x) = D(k,x) = x ® G(k)

with M =C = {0,1}",

K| =2™ m < n and
G:{0,1}" — {0,1}"

a cryptographically secure pseudo-random number generator (CSPRNG)

Pseudo-random number generators

In [1]: import random
uses *insecure* but efficient Mersenne Twister PRNG
random. seed (12345)
for i in range(16):
print(hex(random.randint(®,2**128))[2:-1])

6facaa5090e5e945452ec40a3193cas
6ed4e94bdfc9e3bl1fcff4545f811ch
bc428d42fa88269287f26aeel75f0cd
25ece8452aa4857e8101e89a95¢5b9
d64a3ce030alfed513ed748bb80e3ba
56eaa3017576714a06057c82527122d
94820a06¢555663f29ef41dodeeadss
6aleccdaa70celb51978cec0495cfad
df8960adleab5cd83b788b660adde3e
96af@dead1fad2962f927291ab721ab
213f191ff56ae7eaea80db0684abs561
f702e8c026784184026530cdd50b612
282fe557578h24268a0417415987baf
9f3180427b1427081f1laflfac2eldac
265015788e7ae9afle8fch74b2d4f32
f79fcaabed7b342b2a3a46677eb14f8

Requirements for CSPRNGs

e A/l PRNGs are eventually periodic
(deterministic stateful functions with a finite number of internal states)

— certainly want long period

e Most "standard” PRNGs are easily predictable!

— related-key attacks on the underlying OTP

Linear congruence generator

Definition

Given seed xp, generates a pseudo-random sequence (x,)7°; with
Xpt1 = (axn + b) % p
with a, b fixed constants (integers) and p a prime number.
The knowledge of three consecutive terms is enough to recover a and b!

Hint: the points (x,, xp+1) all lie on the "line” y =ax+b ...
p

Example: p =823, a =816, b = 635, xg = 446

800 7
700 4
600]
500 4
400
300!
2001

100

In practice: LFSRs

Would like to take p = 2, but not very interesting...
— instead: output bit is a fixed linear combination of previous output bits
(closely related to polynomial multiplication!)

Linear feedback shift registers

ololofo]1]1|1]o}——

— DN
MR ZAR YA

Algebraic interpretation of LFSRs

Choose a degree d irreducible polynomial f(x) over Fy
eg, f(x)=x3+x+1,d=3
and pick a root « of f (somewhere!)
~ Fo(a) ={ao+ a1+ -+ + ag_1097 1 ap, a1,...,a4-1 € Fo }

field with 29 elements

Algebraic interpretation of LFSRs

Given xg € Fa(«), define x,11 := a - x, (and output the new ap)
Period is 2¢ — 1 if f is primitive (and xq # 0)

Can be generalized to work with matrices (famous Mersenne Twister)
Still very much like a linear congruence generator! (with 5 =10 ...)

= use nonlinear combinations of outputs of LSFRs

http://en.wikipedia.org/wiki/Mersenne_twister

Some (in)famous stream ciphers

That use linear combinations of LSFRs:

e CSS
e GSM

e Bluetooth EOQ

Some weaknesses found:

e RC4 (used in TLS/SSL and WEP)

http://en.wikipedia.org/wiki/Content_Scramble_System
http://en.wikipedia.org/wiki/RC4

Current recommendations

The eSTREAM project (ECRYPT 2008) proposes

e HC-128, Rabbit, Salsa20, SOSEMANUK (software-oriented)

e Grain, MICKEY, Trivium (hardware-oriented)

(all force the PRNG to use a nonce as initial value)

Still need to be careful to seed the CSPRNG with enough entropy: using PID or
timestamps is not a good ideal!

= better use the system entropy pool e.g. /dev/urandom

http://en.wikipedia.org/wiki/Salsa20

Weekly Jupyter lab

In teams of n = ncst + NCIR + Mew Where:

e2<n<4

® Ncsi, NCIR; Mew < 2

You are encouraged to come up with a hacker team name for your team.

We will use Jupyter with Python 3: either from a local SageMath (or Anaconda) install
or online on CoCalc.

Get the archive at https://gch.ovh/crypto (submit on Campus by Monday).

https://www.fantasynamegenerators.com/hacker-names.php
https://jupyter.org/install
http://www.sagemath.org/
https://www.anaconda.com/distribution/
www.cocalc.com
https://gch.ovh/crypto

	Secret-key encryption
	One-time pad
	Stream ciphers

